NMR structure of a kissing complex formed between the TAR RNA element of HIV-1 and a LNA-modified aptamer

نویسندگان

  • Isabelle Lebars
  • Tristan Richard
  • Carmelo Di Primo
  • Jean-Jacques Toulmé
چکیده

The trans-activating responsive (TAR) RNA element located in the 5' untranslated region of the HIV-1 genome is a 57-nt imperfect stem-loop essential for the viral replication. TAR regulates transcription by interacting with both viral and cellular proteins. RNA hairpin aptamers specific for TAR were previously identified by in vitro selection [Ducongé,F. and Toulmé,J.J. (1999) In vitro selection identifies key determinants for loop-loop interactions: RNA aptamers selective for the TAR RNA element of HIV-1. RNA, 5, 1605-1614]. These aptamers display a 5'-GUCCCAGA-3' consensus apical loop, partially complementary to the TAR one, leading to the formation of a TAR-aptamer kissing complex. The conserved GA combination (underlined in the consensus sequence) has been shown to be crucial for the formation of a highly stable complex. To improve the nuclease resistance of the aptamer and to increase its affinity for TAR, locked nucleic acid (LNA) nucleotides were introduced in the aptamer apical loop. LNA are nucleic acids analogues that contain a 2'-O,4'-C methylene linkage and that raise the thermostablity of duplexes. We solved the NMR solution structure of the TAR-LNA-modified aptamer kissing complex. Structural analysis revealed the formation of a non-canonical G*A pair leading to increased stacking at the stem-loop junction. Our data also showed that the introduction of LNA residues provides an enhanced stability while maintaining a normal Watson-Crick base pairing with a loop-loop conformation close to an A-type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring TAR–RNA aptamer loop–loop interaction by X-ray crystallography, UV spectroscopy and surface plasmon resonance

In HIV-1, trans-activation of transcription of the viral genome is regulated by an imperfect hairpin, the trans-activating responsive (TAR) RNA element, located at the 5' untranslated end of all viral transcripts. TAR acts as a binding site for viral and cellular proteins. In an attempt to identify RNA ligands that would interfere with the virus life-cycle by interacting with TAR, an in vitro s...

متن کامل

Mapping of a protein-RNA kissing hairpin interface: Rom and Tar-Tar*.

An RNA 'kissing' complex is formed by the association of two hairpins via base pairing of their complementary loops. This sense-antisense RNA motif is used in the regulation of many cellular processes, including Escherichia coli ColE1 plasmid copy number. The RNA one modulator protein (Rom) acts as a co-regulator of ColE1 plasmid copy number by binding to the kissing hairpins and stabilizing th...

متن کامل

Liquid-crystal NMR structure of HIV TAR RNA bound to its SELEX RNA aptamer reveals the origins of the high stability of the complex.

Transactivation-response element (TAR) is a stable stem-loop structure of HIV RNA, which plays a crucial role during the life cycle of the virus. The apical loop of TAR acts as a binding site for essential cellular cofactors required for the replication of HIV. High-affinity aptamers directed against the apical loop of TAR have been identified by the SELEX approach. The RNA aptamers with the hi...

متن کامل

Surface plasmon resonance kinetic studies of the HIV TAR RNA kissing hairpin complex and its stabilization by 2-thiouridine modification.

Surface plasmon resonance (BIACORE) was used to determine the kinetic values for formation of the HIV TAR-TAR* ('kissing hairpin') RNA complex. The TAR component was also synthesized with the modified nucleoside 2-thiouridine at position 7 in the loop and the kinetics and equilibrium dissociation constants compared with the unmodified TAR hairpin. The BIACORE data show an equilibrium dissociati...

متن کامل

NMR detection of intermolecular interaction sites in the dimeric 5'-leader of the HIV-1 genome.

HIV type-1 (HIV-1) contains a pseudodiploid RNA genome that is selected for packaging and maintained in virions as a noncovalently linked dimer. Genome dimerization is mediated by conserved elements within the 5'-leader of the RNA, including a palindromic dimer initiation signal (DIS) that has been proposed to form kissing hairpin and/or extended duplex intermolecular contacts. Here, we have ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2007